I believe that this is False.
hope this helps!
The answer is 15 bc you multiply the coefficient but the subscript
Answer:
k = 2,04x10⁻⁵
Explanation:
The equilibrium of acetic acid (CH₃COOH) in water is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺.
And the equilibrium constant is defined as:
k = [CH₃COO⁻] [H⁺] / [CH₃COOH] <em>(1)</em>
The equiibrium concentration of each specie if the solution of acetic acid is 0,05M is:
[CH₃COOH] = 0,05M - x
[CH₃COO⁻] = x
[H⁺] = x
<em>-Where x is the degree of reaction progress-</em>
As the pH is 3, [H⁺] = 1x10⁻³M. That means x = 1x10⁻³M
Replacing in (1):
k = (1x10⁻³)² / 0,05 - 1x10⁻³
k = 1x10⁻⁶ / 0,049
<em>k = 2,04x10⁻⁵</em>
<em></em>
I hope it helps!
Answer is: <span>lead changing to gold.
</span>Transmutation is the conversion of an atom of one element to an atom of another through nuclear reactions. N<span>umber of protons or neutrons in the nucleus is changed. </span>Particle accelerators and nuclear reactors used for creating elements.
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃