In contrast, extratropical cyclones have their strongest winds near the tropopause, which is about 8 miles above the surface. These differences are due to the tropical cyclone being “warm-core” in the troposphere, whereas extra-tropical cyclones are “warm-core” in the stratosphere and “cold-core” in the troposphere.
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
i do not have an answer because it depends on the size and the distance lol
1) yeasts example is Sacchromyces Cerevisiae which is a baker's or brewer's yeast
2) molds example is Rhizopus a type of mold that appears on old bread
3) mushrooms example is Amanita Phalloides also known as the "Death Cap " is a very poisonous mushroom and should not be ingested
Answer:
The answer should be light or other electromagnetic radiation
Explanation:
Such as x-rays or other things like that.
<em>-Hope This Helps!</em>
<em>-Justin:)</em>