Answer:
pH of buffer =4.75
Explanation:
The pH of buffer solution is calculated using Henderson Hassalbalch's equation:
![pH=pKa+log[\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5B%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa = 3.75
concentration of acid = concentration of formic acid = 1 M
concentration of salt = concentration of sodium formate = 10 M
![pH=3.75+log[\frac{10}{1}]=3.75+1=4.75](https://tex.z-dn.net/?f=pH%3D3.75%2Blog%5B%5Cfrac%7B10%7D%7B1%7D%5D%3D3.75%2B1%3D4.75)
pH of buffer =4.75
Answer: Some examples are color, density, volume and mass
Explanation:
Physical properties are anything you can smell, touch, or hear. They can be observed without changing.
Answer:
True
Explanation:
The gaseous state is characterized in that the cohesion forces are usually null, in which the particles have their maximum mobility. The particles tend to occupy all the available volume, so their shape and volume are variable. The gaseous state is a dispersed state of matter, which means that the molecules are separated by distances much larger than the diameter of the gas molecules.
Acid of x bottle is highly reactive because solute is more and acid of y bottle is less reactive because solvent is more.
Answer:
There are typically three ways that it is accomplished: use of erythropoietin (EPO) or synthetic oxygen carriers and blood transfusions. While transfusions of large volumes of blood or use of EPO can be detected, microdosing EPO or transfusing smaller volumes of packed red blood cells is much harder to detect.