Answer: 1.4 moles Mg(NO3)2
Explanation: Solution attached:
Convert the formula units of Mg(NO3)2 to moles using the Avogadro's number.
Answer:
it is the moisture in the air
Explanation:
if we buy a dehumidephire we see that it collets water from the air
It has been proven by Science that when the temperature of a reaction increases, the particles will gain energy and will collide faster and frequently.
Have a nice day! :)
Answer:
= C3H4N
Explanation:
We are given; 90 grams carbon, 11 grams hydrogen, and 35 grams nitrogen.
We first calculate the number of moles of each element.
Carbon = 90g/12 g/mol
= 7.5 moles
Hydrogen = 11 g/ 1 g/mol
= 11 moles
Nitrogen = 35 g/ 14 g/mol
= 2.5 moles
The we get the mole ratio of the elements;
= 7.5/2.5 : 11/2.5 : 2.5 /2.5
= 3 : 4.4 : 1
= 3 : 4 : 1
Therefore;
The empirical formula will be; C3H4N
setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)