Answer:
A. Its translational kinetic energy is larger than its rotational kinetic energy.
Explanation:
Given that
Radius = R
Mass = M
We know that mass moment of inertia for the solid sphere

Lets take angular speed =ω
Linear speed =V
Condition for pure rolling , V= ω R
Rotation energy ,RE





RE= 0.2 MV²
The transnational kinetic energy TE

TE= 0.5 MV²
From above we can say that transnational energy is more than rotational energy.
Therefore the answer is A.
Answer:
230.4 s
Explanation:
The speed of car A is

and the distance travelled is

so the time taken for car A is

The speed of car B is

and the distance travelled is

so the time taken for car B is

So the difference in time is

Which corresponds to

so car B arrived 230.4 s before car A.
The nuclear fusion of hydrogen atoms releases a huge amount of energy. So the correct choice is C. Conversion of mass to energy.
What is nuclear fusion?
When two small nuclei join to form a new nucleus, then this process is termed nuclear fusion. A huge amount of energy is released when there occurs nuclear fusion between the two nuclei. And a new element is formed.
It has been observed that the amount of energy released in nuclear fusion is equal to the mass difference between the mass of the formed nucleus and the total mass of old nuclei. Hence in the nuclear fusion of hydrogen nuclei to form a helium nucleus, the energy is released due to the conversion of mass into energy.
The pressure is increased to make the hydrogen atoms fuse but this change in pressure does not contribute to the energy released in the fusion of hydrogen.
The magnitude of the gravitational field is too low and it does not contribute to the energy released in the fusion of hydrogen.
The gravitational collapse does not occur between the two hydrogen atoms. This phenomenon occurs in celestial bodies so this also does not contribute to the energy released in the fusion of hydrogen.
Learn more about nuclear fusion here:
brainly.com/question/10165218
#SPJ4
Answer:
The number of bright fringes per unit width on the screen is,
Explanation:
If d is the separation between slits, D is the distance between the slit and the screen and
is the wavelength of the light. Let x is the number of bright fringes per unit width on the screen is given by :

is the wavelength
n is the order
If n = 1,

So, the the number of bright fringes per unit width on the screen is
. Hence, the correct option is (B).
Answer:
the maximum force will be equal to 134.84 N
Explanation:
We have given mass m = 43 kg
Coefficient of static friction 
Acceleration due to gravity 
We have to find the maximum force which , when applied there is no movement of crates
This maximum force will be equal to frictional force
Frictional force is given by 
So the maximum force will be equal to 134.84 N