Option C is the correct set of the problem for mass of water produced by 3.2 moles of oxygen and an excess ethene.
<h3>
Reaction between oxygen and ethene</h3>
Ethene (C2H4) burns in the presence of oxygen (O2) to form carbon dioxide (CO2) and water (H2O) along with the evolution of heat and light.
C₂H₄ + 3O₂ ----- > 2CO₂ + 2H₂O
from the equation above;
3 moles of O₂ ---------> 2(18 g) of water
3.5 moles of O₂ ----------> x
![x = 3.2 \times [\frac{2 \ moles \ H_2O}{3 \ moles \ O_2} ] \times[ \frac{18.02 \ g \ H_2O}{1 \ mole \ H_2O} ]](https://tex.z-dn.net/?f=x%20%3D%203.2%20%5Ctimes%20%5B%5Cfrac%7B2%20%5C%20moles%20%5C%20H_2O%7D%7B3%20%5C%20moles%20%5C%20O_2%7D%20%20%5D%20%5Ctimes%5B%20%5Cfrac%7B18.02%20%5C%20g%20%5C%20H_2O%7D%7B1%20%5C%20mole%20%5C%20H_2O%7D%20%5D)
Thus, option C is the correct set of the problem for mass of water produced by 3.2 moles of oxygen and an excess ethene.
Learn more about reaction of ethene here: brainly.com/question/4282233
#SPJ1
These substances can be separated by distillation, so your answer is A.
Answer:
Most viscous to least viscous: 
Explanation:
For hydrocarbons, viscosity increases with increasing molar mass. Because increasing molar mass signifies increase in number of electrons in molecules.
We know that in non-polar hydrocarbons, only van der waal intermolecular force exists. Van der waal force is proportional to number of electrons in a molecule.
Therefore with increasing molar mass, van der waal force increases. hence molecules gets more tightly bind with each other resulting increase in viscosity.
Here molar mass order : 
Therefore viscosity order : 
Answer:
it is a solid
Explanation:
a solid is a fixed shape and size while liquids and gasses are not