Answer:
of water at 30C and 1 atm is 256.834 J/mol·K.
Explanation:
To solve the question, we note the Maxwell relation such as

Where:
= Specific heat of gas at constant pressure = 75.3 J/mol·K
= Specific heat of gas at constant volume = Required
T = Temperature = 30 °C = 303.15 K
α = Linear expansion coefficient = 3.04 × 10⁻⁴ K⁻¹
K = Volume comprehensibility = 4.52 × 10⁻⁵ atm⁻¹
Therefore,
75.3 -
= 
=
- 75.3 = 256.834 J/mol·K.
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Explanation:
Ar=30,97g/mol
/
=
=0,404
0,404=
=20,18/30,97*x
X=20,18/30,97*0,163
X=4
There are 4 atoms of P in the molecule
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Flower and sugar
flowers in sugar water? something along these lines
A. M x L = moles.
<span>b. CH3COOH + NaOH ==> CH3COONa + H2O </span>
<span>I...6 mmols....0.......7.5 mmoles </span>
<span>C... 0........0.51 mmols..0 </span>
<span>E...6-0.511 ....0.......7.5+0.511 </span>
<span>I stands for initial </span>
<span>C stands for change. </span>
<span>E stands for equilibrium. </span>
<span>Just divide mmoles by 1000 to convert to moles. I work in mmoles because I get tired of writing those zeros. </span>
<span>c. done as in b.</span>
Answer: 30 m/s
Explanation:
Use the first kinematic equation for linear motion
