The concentration of the solution reduces and the number of moles of solute isn't affected.
Data;
- V1 = 50mL
- C1 = 12.0M
- V2 = 200mL
- C2 = ?
<h3>Facts about the diluted solution</h3>
1. When the solution is diluted, the concentration changes and this time, the concentration reduces.
Using dilution formula

The concentration of the solution reduces.
2. The number of moles remains the same.
When a solution is diluted, the number of moles remains the same because there's no change in the mass of the solute.
Learn more on concentration of a solution here;
brainly.com/question/2201903
Answer: I think it’s B. Because as you can see from the picture there are layers
Explanation:
I think but just in case ask for a second opinion
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃
Answer:
38 : 25
Explanation:
First thing's first, we have to confirm if the reaction is indeed balanced.
The equation of the reaction is given as;
C25H52 + 38 O2 → 25 CO2 + 26 H2O
From the reaction, 38 moles of O2 produces 25 moles of CO2
The ratio is given as;
38 : 25