4.48 mol Cl2. A reaction that produces 0.35 kg of BCl3 will use 4.48 mol of Cl2.
(a) The <em>balanced chemical equation </em>is
2B + 3Cl2 → 2BCl3
(b) Convert kilograms of BCl3 to moles of BCl3
MM: B = 10.81; Cl = 35.45; BCl3 = 117.16
Moles of BCl3 = 350 g BCl3 x (1 mol BCl3/117.16 g BCl3) = 2.987 mol BCl3
(c) Use the <em>molar ratio</em> of Cl2:BCl3 to calculate the moles of Cl2.
Moles of Cl2 = 2.987 mol BCl3 x (3 mol Cl2/2 mol BCl3) = 4.48 mol Cl2
Hey there!:
density = 3.51 g/cm³
Volume = 0.0270 cm³
Therefore:
D = m / V
3.51 = m / 0.0270
m = 3.51 * 0.0270
m = 0.09477 g
Answer:
cesium
Explanation: because it says so online I have no idea what you are talking about so I guess google is correct
A.) temperature
By raising the temperature the gas molecules speed up causing collisions with the volume of a container if kept constant.
Answer:
Percent Composition
1. Find the molar mass of all the elements in the compound in grams per mole.
2. Find the molecular mass of the entire compound.
3. Divide the component's molar mass by the entire molecular mass.
4. You will now have a number between 0 and 1. Multiply it by 100% to get percent composition.