One way of expressing concentration is by percent. It may be on the basis of mass, mole or volume. Percent is expressed as the amount of solute per amount of the solution. For this case, we are given the percent by mass. In order to solve the amount of solute, we multiply the percent with the amount of the solution.
Mass of solute = percent by mass x mass solution
Mass of solute = 0.0350 x 2.50 x10^2 = 8.75 grams of solute
Give 3 Examples of where potential energy was converted to knlinetic energy:
Curtain
A ball before moving
An apple from the tree then falling down
When the Curtains are still, we call the that potential energy. If you move the curtains around, that is kinetic energy
The ball is still, that is potential energy. Then the ball is moving, the is kinetic energy
There is a apple ganging from a tree, that is potential energy. That apple is fall, this is kinetic energy
Hope this helps
Don't type or write in the answer, I'm not sure what from the lab means. These are a few potential into kinetic energy I could have think of!
Answer:
If the temperature of gas is decreased the pressure will also goes to decrease.
Explanation:
The pressure and temperature have direct relation. If the temperature of gas will increase the pressure of gas will also goes to increase.
According to the Gay-Lussas's Law,
The pressure of given amount of gas is directly proportional to the absolute temperature when volume is kept constant.
Mathematical relationship:
P ∝ T
P = kT
P/T = k
and
P₁/T₁ = P₂/T₂
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in