Answer:
I think its b
Explanation:
but I wouldn't depend on this answer
The isotope that is more abundant, given the data is isotope Li7
<h3>Assumption</h3>
- Let Li6 be isotope A
- Let Li7 be isotope B
<h3>How to determine whiche isotope is more abundant</h3>
- Molar mass of isotope A (Li6) = 6.02 u
- Molar mass of isotope B (Li7) = 7.02 u
- Atomic mass of lithium = 6.94 u
- Abundance of A = A%
- Abundance of B = (100 - A)%
Atomic mass = [(mass of A × A%) / 100] + [(mass of B × B%) / 100]
6.94 = [(6.02 × A%) / 100] + [(7.02 × (100 - A)) / 100]
6.94 = [6.02A% / 100] + [702 - 7.02A% / 100]
6.94 = [6.02A% + 702 - 7.02A%] / 100
Cross multiply
6.02A% + 702 - 7.02A% = 6.94 × 100
6.02A% + 702 - 7.02A% = 694
Collect like terms
6.02A% - 7.02A% = 694 - 702
-A% = -8
A% = 8%
Thus,
Abundance of B = (100 - A)%
Abundance of B = (100 - 8)%
Abundance of B = 92%
SUMMARY
- Abundance of A (Li6) = 8%
- Abundance of B (Li7) = 92%
From the above, isotope Li7 is more abundant.
Learn more about isotope:
brainly.com/question/24311846
#SPJ1
Answer:
1.14 M
Explanation:
Step 1: Calculate the moles corresponding to 317 g of calcium chloride (solute)
The molar mass of calcium chloride is 110.98 g/mol.
317 g CaCl₂ × 1 mol CaCl₂/110.98 g CaCl₂ = 2.86 mol CaCl₂
Step 2: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = moles of solute / liters of solution
M = 2.86 mol / 2.50 L = 1.14 mol/L = 1.14 M
Answer:
you picked the right one the net worth of force would be 10
Explanation:
how cuz you got 1 team with 6 force then aother 1 with 4 add em up u get 10