This is the answer of this question
Answer: k=-1/x^2+2
Step-by-step explanation:
The volume of the candle initially is:
V=Ab*h
Area of the base of the cylinder: Ab=pi*r^2
pi=3.14
Radius of the base: r=4 cm
Height of the cylinder: h=6 cm
Ab=pi*r^2
Ab=3.14*(4 cm)^2
Ab=3.14*(16 cm^2)
Ab=50.24 cm^2
V=Ab*h
V=(50.24 cm^2)*(6 cm)
V=301.44 cm^3
The candle melts at a constant rate of:
r=(60 cm^3)/(2 hours)=(120 cm^3)/(4 hours)=(180 cm^3)/(6 hours)
r=30 cm^3/hour
The amount of candle melted off after 7 hours is:
A=(30 cm^3/hour)*(7 hours)
A=210 cm^3
The percent of candle that is melted off after 7 hours is:
P=(A/V)*100%
P=[(210 cm^3)/(301.44 cm^3)]*100%
P=(0.696656051)*100%
P=69.66560510%
Rounded to the nearest percent
P=70%
Answer: 70%
Answer:
80 + 18i
Step-by-step explanation:
i² = -1
x = i + 9
x² = (i + 9)²
Applying; (a + b)² = a² + 2ab + b² concept,
x² = i² + 18i + 81
We know that i² = -1
So x² = -1 + 18i + 81
x² = 81 - 1 + 18i = 80 + 18i