In evaporation due to internal heat, kinetic energy of molecules increases and they come to the top and take out that heat with them when they evaporate thus causes cooling
in boiling as heat is given to the molecules so their kinetic energy increases and they start vibrating with great energy and thus causes heating
Addition of boiled, deionized water to the titrating flask to wash the wall of the erlenmeyer flask and the buret tip will have no effect on the Ksp value of ca(oh)2.
There will be no effect on the Ksp value as boiled deionised water is not able to alter the number of hydronium and hydroxide ions. As no change in the ions happen so there will be no change in Ksp value. The equilibrium constant for a solid material dissolving in an aqueous solution is the solubility product constant, Ksp. It stands for the degree of solute dissolution in solution. A substance's Ksp value increases with how soluble it is.
To know more about, solubility product constant, click here,
brainly.com/question/6960236
#SPJ4
<span>1.15x10^24 molecules of hypothetical substance b
Making the assumption that each molecule in hypothetical substance a reacts to produce a single molecule of hypothetical substance b, then the number of molecules of substance b will be the number of moles of substance a multiplied by avogadro's number. So
Moles hypothetical substance a = 29.9 g / 15.7 g/mol = 1.904458599 moles
This means that we should also have 1.904458599 moles of hypothetical substance b. And to get the number of atoms, multiply by 6.0221409x10^23, so:
1.904458599 * 6.0221409x10^23 = 1.146892x10^24 molecules.
Rounding to 3 significant figures gives 1.15x10^24</span>
Answer:
Option C: Observation
Explanation:
The first and foremost step in the process of scientific inquiry is observation. Because, until there is no observation there are no questions to Ask. Having high quality observation is too much valuable in scientific process.
Oxygen is an example of a gas