M=D*V
D=10.5 g/cm³
V=42.5 cm³
m= 10.5 g/cm³ * 42.5 cm³ ≈ 446 g
m≈446 g
Ionic compounds share electrons :)
Answer:
1.21 g of Tris
Explanation:
Our solution if made of a solute named Tris
Molecular weight of Tris is 121 g/mol
[Tris] = 100 mM
This is the concentration of solution:
(100 mmoles of Tris in 1 mL of solution) . 1000
Notice that mM = M . 1000 We convert from mM to M
100 mM . 1 M / 1000 mM = 0.1 M
M = molarity (moles of solute in 1 L of solution, or mmoles of solute in 1 mL of solution). Let's determine the mmoles of Tris
0.1 M = mmoles of Tris / 100 mL
mmoles of Tris = 100 mL . 0.1 M → 10 mmoles
We convert mmoles to moles → 10 mmol . 1mol / 1000mmoles = 0.010 mol
And now we determine the mass of solute, by molecular weight
0.010 mol . 121 g /mol = 1.21 g
Answer: ₉₈²⁵³Cf
253 is a superscript to the left of the symbol, Cf, which represents the mass number, and 98 is a subscript to the left of the same symbol, which represents the atomic number.
Explanation:
1) The alpha decay equation shows that the isotope Fm - 257, whose nucleus has 100 protons and 157 neutrons, emitted an alpha particle (a nucleus with 2 protons and 2 neutrons).
2) Therefore:
i) the mass number decreased in 4, from 257 to 257 - 4 = 253.
2) the atomic number decreased in 2, from 100 to 100 - 2 = 98.
3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253.
4) The item that completes the given alpha decay reaction is:
₉₈²⁵³ Cf.
5) The complete alfpha decay reaction is:
₁₀₀²⁵⁷ Fm → ₉₈²⁵³Cf + ₂⁴He
You can verify the mass balance:
257 = 253 + 4, and
100 = 98 + 2
32.066 atomic mass units.