Missing question:
Nitrogen: <span>2.0 L; </span>1.0 atm; 25°<span>C.
Oxygen: 3</span>.0 L; 2.0 atm; 25°C.
<span>When the valve between the two containers is opened, nitrogen gas moves from one container to another container and gases are mixed together, total volume of nitrogen is than:
V(nitrogen) = 2,0 L + 3,0 L = 5,0 L.</span>
Answer:
The answer to your question is 33.4 ml
Explanation:
Data
volume 1 = V1 = 42 ml
temperature 1 = T1 = 20°C
temperature 2 = T2 = -60°C
Volume 2 = V2 = x
Process
1.- Convert celsius to kelvin
T1 = 20 + 273 = 293°K
T2 = -60 + 273 = 233°K
2.- Use the Charles' law to solve this problem

Solve for V2
V2 = 
3.- Substitution
V2 = 
4.- Simplification
V2 = 
5.- Result
V2 = 33.4ml
To solve this problem, separate it into chunks that you know. You know that there are 2.54 centimeters in 1 inch. You know that there are 100 centimeters in 1 meter. You know that there are 1000 meters in a kilometer. Therefore, we'll convert in this order: 1) from kilometers to meters, 2) from meters to centimeters, and 3) from centimeters to inches.
1) 1km × 1000m/1km
= 1000m
2) 1000m × 100cm/1m
= 100000cm
3) 100000cm × 1in/2.54cm
≈ 39370in
So, there are approximately 39370 inches in a kilometer.
No atoms are lost or made during the chemical reaction so the total mass of the products is equal to the total mass of the reactants. In an atom, protons and neutrons contribute to the mass and since the number of them doesn’t change, the mass doesn’t either.
Answer:
The weight-average molar mass of polystyrene is 134,160 g/mol.
Explanation:
Molar mass of the monomer styrene ,
, M=104 g/mol
Given , number average molar mass of the polymer , M'= 89,440 g/mol
Degree of polymerization = n

The weight-average molar mass = 
Molar mass dispersity is ratio of weight-average molar mass to the number average molar mass of the polymer.



The weight-average molar mass of polystyrene is 134,160 g/mol.