Answer:
Both are right.
Step-by-step explanation:
The two are both right.
Multiplication in algebra obeys the cummutative law ( a * b = b * a).
Answer:
(a) x = -2y
(c) 3x - 2y = 0
Step-by-step explanation:
You can tell if an equation is a direct variation equation if it can be written in the format y = kx.
Note that there is no addition and subtraction in this equation.
Let's put these equations in the form y = kx.
(a) x = -2y
- y = x/-2 → y = -1/2x
- This is equivalent to multiplying x by -1/2, so this is an example of direct variation.
(b) x + 2y = 12
- 2y = 12 - x
- y = 6 - 1/2x
- This is not in the form y = kx since we are adding 6 to -1/2x. Therefore, this is <u>NOT</u> an example of direct variation.
(c) 3x - 2y = 0
- -2y = -3x
- y = 3/2x
- This follows the format of y = kx, so it is an example of direct variation.
(d) 5x² + y = 0
- y = -5x²
- This is not in the form of y = kx, so it is <u>NOT</u> an example of direct variation.
(e) y = 0.3x + 1.6
- 1.6 is being added to 0.3x, so it is <u>NOT</u> an example of direct variation.
(f) y - 2 = x
- y = x + 2
- 2 is being added to x, so it is <u>NOT</u> an example of direct variation.
The following equations are examples of direct variation:
The value of f(a)=4-2a+6
, f(a+h) is
, [f(a+h)-f(a)]/h is 6h+12a-2 in the function f(x)=4-2x+6
.
Given a function f(x)=4-2x+6
.
We are told to find out the value of f(a), f(a+h) and [f(a+h)-f(a)]/hwhere h≠0.
Function is like a relationship between two or more variables expressed in equal to form.The value which we entered in the function is known as domain and the value which we get after entering the values is known as codomain or range.
f(a)=4-2a+6
(By just putting x=a).
f(a+h)==
=4-2a-2h+6(
)
=4-2a-2h+6
=
[f(a+h)-f(a)]/h=[
-(4-2a+6
)]/h
=
=
=6h+12a-2.
Hence the value of function f(a)=4-2a+6
, f(a+h) is
, [f(a+h)-f(a)]/h is 6h+12a-2 in the function f(x)=4-2x+6
.
Learn more about function at brainly.com/question/10439235
#SPJ1
Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks
The third table on the top row. It has a linear function because the Y is always constant. For example: -3 + -2= -5 -5 + -2= -7