Answer: The partial pressure of oxygen in the mixture if the total pressure is 525 mmHg is 310 mm Hg
Explanation:
mass of nitrogen = 37.8 g
mass of oxygen = (100-37.8) g = 62.2 g
Using the equation given by Raoult's law, we get:

= partial pressure of
= ?

= total pressure of mixture = 525 mmHg


Total moles = 1.94 + 1.35 = 3.29 moles


Thus the partial pressure of oxygen in the mixture if the total pressure is 525 mmHg is 310 mm Hg
Reaction [taking place]
Hope that helps
Answer:
See Explanation
Explanation:
Mathematically, this means to combine like terms, such as terms with the same variable. In chemistry, this can refer to polar objects combining with polar objects while nonpolar objects combine with nonpolar objects.
6.02214086 x 10^23 mol^-1
Answer:
b. The splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
Explanation:
The spectrochemical series is an arrangement of ligands in increasing order of their magnitude of crystal field splitting.
Ligands that occurs towards the right in the series are called strong field ligands and they tend to cause a greater magnitude of crystal field splitting. Ligands that occur towards the left hand side in the series are called weak field ligands and they tend to cause a lesser magnitude of crystal field splitting.
Since Cl^- is a weak field ligand, it causes a lesser magnitude of d orbital splitting compared to ethylenediammine (en) which causes a greater magnitude of d orbital splitting.
Hence; the splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.