What we're looking for here is the gas sample's molar mass given its mass, pressure, volume, and temperature. Recalling the gas law, we have

or

where R is <span>0.08206 L atm / mol K, P is the given pressure, T is the temperature, and V is the volume.
Before applying the values given, it is important to make sure that they are to be converted to have consistent units with that of R.
</span>
Thus, we have
P = 736/ 729 = 0.968 atm
T = 28 + 273.15 = 301.15 K
V = 250/1000 = 0.250 L
Now, applying these converted values into the gas law, we have


Given that the mass of the sample is 0.430 g, we have

Thus, the gas sample has a molar mass of 43.9 g/mol.
corrected question:
Determining Density and Using Density to Determine Volume or Mass
(a) Calculate the density of mercury if 1.00 × 10 g occupies a volume of 7.36 cm³
(b) Calculate the volume of 65.0 g of liquid methanol (wood alcohol) if its density is 0.791 g/mL.
(c) What is the mass in grams of a cube of gold (density = 19.32 g/cm) if the length of the cube is 2.00 cm?
(d) Calculate the density of a 374.5-g sample of copper if it has a volume of 41.8 cm³ A student needs 15.0 g of ethanol for an experiment. If the density of ethanol is 0.789 g/mL, how many milliliters of ethanol are needed? What is the mass, in grams, of 25.0 mL of mercury (density = 13.6 g/mL)?
Answer:
density = 
ρ=m/v ,m=ρv, v=m/ρ
(a)m=1*10g , v=7.36cm³
ρ=10/7.36 =1.36g/cm³
(b) m=65g, ρ=0.791 g/mL.
v= 65/0.791 =82.17g/mL
(c) ρ=19.32g/cm³, l=2cm, v=l³=8cm³
m=19..32*8=154.56g/cm³
(d) mass of copper=374.5g , v=41.8cm³
ρ=374.5/41.8 =8.96g/cm³
mass of ethanol=15g, density of ethanol=0.789g/mL
v=15/0.789 =19.01mL
volume of mecury=25mL, density of mercury=13.6g/mL
m=25*13.6=340g
The molecular geometry is trigonal planar. I would choose E
The answer is 0 if im right
To answer this problem, we use Hess' Law to calculate the overall enthalpy of the reactions. The goal is to add all the reactions such that the final reaction is C<span>5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l) through cancellation adn multiplication. The first equation is multiplied by 5, the second one is multiplied by 6 and the third one is reversed. The final answer is -3538 J or -3.54 x10^3 kJ.</span>