The correct scientific notation is 7.82 x 105 g
Answer:
The First Battle of Panipat was fought between the invading forces of Babur and the Lodi Empire, which took place on 21 April 1526 in North India. It marked the beginning of the Mughal Empire. This was one of the earliest battles involving gunpowderfirearms and field artillery.
Answer:
1.
2.
3.The electron affinity of
is zero.
4.
Explanation:
1.
<u>Electron affinity:</u>
It is defined as the amount of energy change when an electron is added to atom in the gaseous phase.
The electron affinity of
is as follows.

2.
<u>Ionization energy</u>:
Amount of energy required to removal of an electron from an isolated gaseous atom.
The third ionization energy of Titanium is as follows.

3.
The electronic configuration of Mg: 
By the removal of two electrons from a magnesium element we get
ion.
has inert gas configuration i.e,
Hence, it does not require more electrons to get stability.
Therefore,the electron affinity of
is zero.
4.
The ionization energy of
is follows.

Oxygen is needed to carry out a lot of biochemical processes in the body. If the amount of oxygen available to the blood decreases significantly a lot of things will go wrong in the body. For instance, lack of adequate oxygen will lead to the death of neurons which will eventually leads to brain cells death and irreparable brain damage. Oxygen is also needed for cellular respiration, without respiration, there will not be oxygen for carrying out various cellular activities and this will result into death. Oxygen deprivation will also leads to difficulty in breathing and other associated problems.
The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml