Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
C
Explanation:
Similar characteristics depend on columns.
Flourine and Chlorine are both halogens so they will have similar properties.
Answer:
C. cooler than both the crust and the core
Explanation:
It is observed that at the mantle, temperatures range from estimatedly 200 °C (392 °F) around the upper boundary with the crust to approximately 4,000 °C (7,230 °F) at the core-mantle boundary.
So we can say the mantle is cooler than both the crust and the core.
<span>Relative abundance - comparison between the isotopes Percent abundance -
</span><span>comparing the totals.
</span>relative abundance:the number of organisms of a particular kind as a percentage of the total number of organisms of a given area or community; the number of birds of a particular species as a percentage of the total bird population of a given area percent:figured or expressed on the basis of a rate or proportion per hundred (used in combination with a number in expressing rates of interest, <span>proportions, etc.</span><span>
</span>
<span>
</span>
According to the equation, the ratio of the reactant Cu and product CuO is 2:2, thus 1:1. Therefore to produce 2.44 mol CuO, 2.44 mol Cu is required. The molecular weight of Cu is 64. So the mass of Cu that is required to produce 2.44mol CuO is 2.44mol * 64 g/mol = 156.16 g.