To create the liquid and superfluid states you cool down helium gas to a few degrees above absolute zero
Answer:
This metal could be the aluminium with a specific heat of 
Explanation:
A pie of unknown metal presents a mass (M) of 348 g. This metal is heated using energy (E) of 6.64 kJ and the temperature increases from T1 =24.4 to T2 =43.6°C. We can calculate the specific heat (H) of this metal as follows

We can replace previously presented data in this equation. After simplifying and converting to adequated units, we found that

Finally, the specific heat of this metal is

The aluminium could be the metal, its specific heat is similar to that found in this problem.
Finally, we can conclude that this metal could be the aluminium with a specific heat of 
Answer:
Explanation:
Mg + 2HCl = Mg Cl₂ + H₂
.594 g = .594 / 24.3
= .02444 mole
Heat evolved = msΔ T , m is mass of water ( solvant ) , s is specific heat of water , Δ T is rise in temperature
= 100 x 4.2 x ( 41.83 - 25 )
= 7068.6 J
.02444 mole of Mg evolves 7068.6 J of heat
1 mole of Mg evolves 7068.6 /.02444 J
= 289222.6 J
= 289 kJ .
Molar heat enthalpy = 289 kJ .
Answer:
9.63 L.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

So the consumed amounts of hydrochloric acid and bromine are the same to the beginning based on:

In such a way, the yielded moles of hydrobromic acid and chlorine are:

Thus, the volume of the sample, after the reaction is the same as no change in the total moles is evidenced, that is 9.63L.
Best regards.