Ibuprofen is synthesized by reacting ethyl 2-(4-isobutylphenyl)acetate with base, the base abstracts the acidic proton and enolate is formed which on reaction with diethyl carbonate generates diethyl 2-(4-isobutylphenyl)malonate
(A). diethyl 2-(4-isobutylphenyl)malonate on treatment with Base again looses the acidic proton and forms enolate. The enolate with treatment with Methyl Iodide yields diethyl 2-(4-isobutylphenyl)-2-methylmalonate
(B). diethyl 2-(4-isobutylphenyl)-2-methylmalonate on
hydrolysis give
Ibuprofen.
Answer:
4.16g of MgCl2
Explanation:
First, let us generate a balanced equation for the reaction:
Mg + 2HCl —> MgCl2 + H2
Molar Mass of Mg = 24g/mol
Molar Mass of MgCl2 = 24 + (2x35.5) = 24 + 71 = 95g
From the equation,
24g of Mg produced 95g of MgCl2.
Therefore, 1.05g of Mg will produce = (1.05x95)/24 = 4.16g of MgCl2
Solution :
Given :
Amount of anserine solution = 0.200 M
pH value is = 7.20
Preparation of 0.04 M solution of anserine from the 0.2 M solution.
0.2 M x
= 0.04 M x 1000 ml
= 200 ml
So the 200 ml of 0.2 M anserine solution is required to prepare0.04 M of anserine.
0.1 M x
= 0.04 x 1000 ml
= 400 ml
Therefore, 400 ml of HCl is needed.
Answer:
22.45g of Fe will be produced
Explanation:
The balanced reaction is:
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
<em>Where 1 mole of Iron (III) oxide reacts with 2 moles of Iron</em>
<em />
To solve this question we have to find the moles of iron (III) oxide. With these moles and the balanced reaction we can find the moles of iron produced and its mass:
<em>Moles iron (III) oxide -Molar mass: 159.69g/mol-</em>
32.1g Fe₂O₃ * (1mol / 159.69g) = 0.201 moles Fe₂O₃
<em>Moles Iron:</em>
0.201 moles Fe₂O₃ * (2mol Fe / 1mol Fe₂O₃) = 0.402 moles of Fe
<em>Mass Fe -Molar mass: 55.845g/mol-</em>
0.402 moles of Fe * (55.845g/mol) =
<h3>22.45g of Fe will be produced</h3>