1.25 is the answer to tht if im right but could be wrong
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
To determine the heat released by the process of condensation, we simply multiply the amount of the gas that condensed to the latent heat of vaporization. We do as follows:
Heat released = 21 J/g (12.0 g ) = 252 J of heat released
It is important to have the international system of units 'cause <span>it can be used by scientists everywhere around the world, and they will be able to understand each other with more accuracy.
In short, Your Answer would be Option D
Hope this helps!</span>
Answer:
The correct answer will be "2 m".
Explanation:
As we know,
⇒ 
Now,
⇒ 
Then,
⇒ 
⇒ 