The average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
<h3>Acceleration of the box</h3>
The acceleration of the box is calculated as follows;
vf² = vi² + 2as
a = (vf² - vi²)/2s
a = (11.5² - 13²) / (2 x 8.5)
a = -2.16 m/s²
<h3>Time of motion of the box</h3>
The time taken for the box to travel is calculated as follows;
a = (vf - vi)/t
t = (vf - vi) / a
t = (11.5 - 13) / (-2.16)
t = 0.69 s
<h3>Average power supplied by the friction</h3>
P = Fv
P = (ma)(vf - vi)
P = (1 x -2.16) x (11.5 - 13)
P = 3.24 W
Thus, the average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
Learn more about average power here: brainly.com/question/19415290
#SPJ1
Answer:
The tension in the strap is 74.82 N.
Explanation:
Given that,
Angle between the horizontal and the suitcase is 36 degrees.
The distance traveled by the suitcase is 15 meters.
Let the work done by the suitcase is 908 J. We know that the work done in the vector form is given by :

So, the tension in the strap is 74.82 N. Hence, this is the required solution.
The answer is wave.
A wave can be defined as a rhythmic flow that moves over a medium from one place to the different area.
You didn't give us anything other than the question. No options are provided so I cannot answer. Nobody can.