Answer:
q = 8.57 10⁻⁵ mC
Explanation:
For this exercise let's use Newton's second law
F = ma
where force is magnetic force
F = q v x B
the bold are vectors, if we write the module of this expression we have
F = qv B sin θ
as the particle moves perpendicular to the field, the angle is θ= 90º
F = q vB
the acceleration of the particle is centripetal
a = v² / r
we substitute
qvB = m v² / r
qBr = m v
q =
The exercise indicates the time it takes in the route that is carried out with constant speed, therefore we can use
v = d / t
the distance is ¼ of the circle,
d =
d =
we substitute
v =
r =
let's calculate
r =
2 2.2 10-3 88 /πpi
r = 123.25 m
let's substitute the values
q =
7.2 10-8 88 / 0.6 123.25
q = 8.57 10⁻⁸ C
Let's reduce to mC
q = 8.57 10⁻⁸ C (10³ mC / 1C)
q = 8.57 10⁻⁵ mC
Answer:
Mass of Little Sister = 44.17 kg
Explanation:
From Newton's second law of motion, the magnitude of force applied on the sled is given by the following formula:
F = ma
where,
F = Force Applied = 120 N
a = Acceleration = 2.3 m/s²
m = Mass of Sled + Mass of Little Sister = 8 kg + Mass of Little Sister
Therefore,
120 N = (2.3 m/s²)(8 kg + Mass of Little Sister)
(120 N)/(2.3 m/s²) = 8 kg + Mass of Little Sister
Mass of Little Sister = 52.17 kg - 8 kg
<u>Mass of Little Sister = 44.17 kg</u>
Answer:
The lightbulb will NOT light.
Explanation:
You put me in a difficult position. I can't help it, but the "sample answer" is by far the best way to explain this, briefly and correctly. There's no other choice but to copy it.
This is a short circuit. The branch without the bulb has almost no resistance, so all the current will flow through that branch instead of flowing through the bulb.
<em>If</em> the lower switch were <u>opened</u>, THEN we would have a series circuit. Current would no longer have any other choice but to flow through the bulb, and the bulb would light.
In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
<h2>Answer:</h2>
<u>Turning a magnet very quickly would be BEST used to create an electric current</u>
<h2>Explanation:</h2>
In Electromagnetic waves electric field produces magnetic field and vice versa. A moving magnet can produce electric current. Dynamo is the best example for it. In dynamo armature is rotated between the magnets which results in the development of electric field and hence an electric current is produced in it.