Answer:
a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards
Explanation:
The forces on the athlete are
a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,
therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards
b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles
c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.
<span>You cant change the curve of a graph with out changing the equation</span>
The worm is the invertebrate. All the other animals are vertebrates.
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.