Hello!
Answer:
When a gas gets hot it should go up because of the pressure.
Explanation:
Hope this helps!
Hello,
<u>Solution for A:</u>
Force = 3.00N
Mass = 0.50 Kgs
Time = 1.50 Seconds
According to newton's second law of motion;
Force = Mass times Acceleration(a)
3.00 = 0.50 * a
a = 3.00/0.50 = 6.00 m/s^2
We know that acceleration = Velocity / time
So Velocity = time * acceleration = 1.50 * 6 = 9.00 m/s^2
<u>Solution for B:</u>
The net force = 4.00N - 3.00N = 1.00N to the left
Force = 1.00N
Mass = 0.50Kg
Time = 3.00 Seconds
Again; F = MA (Where F is force, M is mass and A is acceleration)
1.00N = 0.5 * A
A = 1/0.5 = 2 m/s^2
Velocity = Acceleration * Time = 2 * 3 = 6 m/s
Answer:
1.57772 m
Explanation:
M = Mass of actor = 84.5 kg
m = Mass of costar = 55 kg
v = Velocity of costar
V = Velocity of actor
= Intial height of actor = 4.3 m
g = Acceleration due to gravity = 9.81 m/s²
As the energy of the system is conserved

As the linear momentum is conserved

Applying conservation of energy again

The maximum height they reach is 1.57772 m
Add the KE increase and the work done against friction.
The final velocity is twice the average, or 3.0 m/s
The final KE is (1/2)*25*3^2 = 112.5 J
The friction work done is 6*3.8 = 22.8 J
hope this is correct