Answer:
Explanation:
a )
We shall apply the concept of impulse .
Impulse = force x time = change in momentum
= 5 x 4 = 2 ( V - 3 ) , where V is final velocity of the object
20 = 2V - 6
V = 13 m /s
b )
Impulse applied = - 7 x 4 = - 28 kg m/s ( negative as direction of force is opposite motion )
If v be the final velocity
2 x 3 - 28 = 2 v ( initial momentum - change in momentum = final momentum )
- 22 = 2v
v = - 11 m /s
object will move with 11 m /s in opposite direction .
Answer:
the force would increase 4 times more
Explanation
more force results more mass or acceleration
Answer:
Potential energy
Kinetic energy
Gravitational energy.
Explanation:
The potential energy is the stored energy, it is the energy and object posses at rest. When the base jumper is still at rest i.e without motion, she has potential energy.
Gravitational energy this refer to the potential energy an object or body with mass posses in relation to another object due to gravity.
This is seen when the base number is still at rest and the force of gravity on the Earth acting on her.
Kinetic energy is the energy posses by an object or body in motion.
As the base jumper falls to the ground, she posses kinetic energy which is the energy in motion.
Thermal energy is the total energy of all the molecules in an object. The thermal energy of an object depends on three things: 4 the number of molecules in the object 4 the temperature of the object (average molecular motion) 4 the arrangement of the object's molecules (states of matter).
Hope this helps
Answer:
y = 54.9 m
Explanation:
For this exercise we can use the relationship between the work of the friction force and mechanical energy.
Let's look for work
W = -fr d
The negative sign is because Lafourcade rubs always opposes the movement
On the inclined part, of Newton's second law
Y Axis
N - W cos θ = 0
The equation for the force of friction is
fr = μ N
fr = μ mg cos θ
We replace at work
W = - μ m g cos θ d
Mechanical energy in the lower part of the embankment
Em₀ = K = ½ m v²
The mechanical energy in the highest part, where it stopped
= U = m g y
W = ΔEm =
- Em₀
- μ m g d cos θ = m g y - ½ m v²
Distance d and height (y) are related by trigonometry
sin θ = y / d
y = d sin θ
- μ m g d cos θ = m g d sin θ - ½ m v²
We calculate the distance traveled
d (g syn θ + μ g cos θ) = ½ v²
d = v²/2 g (sintea + myy cos tee)
d = 9.8 12.6 2/2 9.8 (sin16 + 0.128 cos 16)
d = 1555.85 /7.8145
d = 199.1 m
Let's use trigonometry to find the height
sin 16 = y / d
y = d sin 16
y = 199.1 sin 16
y = 54.9 m