Answer:

Explanation:
Acceleration is given by

where
u is the initial velocity
v is the final velocity
t is the time interval
In this problem:
is the initial velocity
is the final velocity
t = 2 s is the time
Substituting, we find the acceleration:

Answer:
a) r = 4.22 10⁷ m, b) v = 3.07 10³ m / s and c) a = 0.224 m / s²
Explanation:
a) For this exercise we will use Newton's second law where acceleration is centripetal and force is gravitational force
F = m a
a = v² / r
F = G m M / r²
G m M / r² = m v² / r
G M / r = v²
The squared velocity is a scalar and this value is constant, so let's use the uniform motion relationships
v = d / t
As the orbit is circular the distance is the length of the circle in 24 h time
d = 2π r
t = 24 h (3600 s / 1 h) = 86400 s
Let's replace
G M / r = (2π r / t)²
G M = 4 π² r³ / t²
r = ∛(G M t² / (4π²)
r = ∛( 6.67 10⁻¹¹ 5.98 10²⁴ 86400² / (4π²)) = ∛( 75.4 10²¹)
r = 4.22 10⁷ m
b) the speed module is
v = √G M / r
v = √(6.67 10⁻¹¹ 5.98 10²⁴/ 4.22 10⁷
v = 3.07 10³ m / s
c) the acceleration is
a = G M / r²
a = 6.67 10⁻¹¹ 5.98 10²⁴ / (4.22 10⁷)²
a = 0.224 m / s²
One divides the volume by the density. You get

(or one liter, if you want)
Answer:
Explanation:
Now for this kind of phenomena in which drag cars are very elongated with front wheels placed far away from the rear wheels resulting in keeping the car front end from nosing upward,this is due to the reason because it helps in shifting the center of mass towards the front.
Hence when the car accelerates
torque due to gravity = torque due to air friction
B If you want me to explain then ask