Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
The correct option is (a) H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
<h3>What is molar Ratio ?</h3>
Molar ratio also known as stoichiometry is the ratio in which the reactants and products are either formed or reacted in the given equation
the balanced equation is as follows ;
2H₂S + 3O₂ --> 2SO₂ + 2H₂O
molar ratio can be determined by the coefficients of the compounds in the balanced reaction.
coefficient is the number in front of the chemical compound
coefficients for the compounds in this reaction are as follows ;
- H₂S - 2
- O₂ - 3
- SO₂ - 2
- H₂O - 2
therefore, correct option is (a) H₂S:SO₂ = 2:2 and O₂:H₂O = 3:2
Learn more about molar ratio here ;
brainly.com/question/17920577
#SPJ1
Answer:
Decreased because the method can not distinguish oxygen from the gas added
Explanation:
Argon is a pure element which means that it cannot be broken down further than it already is. Methane, however, is a hydrocarbon, which means it is made out of both hydrogen and carbon and thus can be broken down to separate those elements.