Answer:
The second choice, or flammability.
Explanation:
The flammability of something is how easy it is for it to burn or ignite.
The chemical name is ferric oxide or iron (III) oxide or hematite. We can found it naturaly as a magnetite, mineral.
<u>Answer:</u> The solubility product of silver (I) phosphate is 
<u>Explanation:</u>
We are given:
Solubility of silver (I) phosphate = 1.02 g/L
To convert it into molar solubility, we divide the given solubility by the molar mass of silver (I) phosphate:
Molar mass of silver (I) phosphate = 418.6 g/mol

Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The chemical equation for the ionization of silver (I) phosphate follows:
3s s
The expression of
for above equation follows:

We are given:

Putting values in above expression, we get:

Hence, the solubility product of silver (I) phosphate is 
Answer:
The same instrument must be used to measure the unknown solution as was used to measure the known (standard) solutions that were used to create the calibration curve.
The analyte in the unknown solution must be the same analyte (or type of analyte) that is present in the known (standard) solutions that were used to create the calibration curve.
Domain and range restrictions must be observed.
Explanation:
Calibration curves are tools necessary in understanding the instrumental response for any analyte.
A calibration curve is obtained by preparing a set of standard solutions with known concentrations of the analyte. The instrument response for each concentration is measured and plotted against the concentration of the standard solution. The linear portion of this plot may be used to determine the unknown concentration of a sample of the analyte.
The equation of the best-fit line is used to determine the concentration of the unknown sample.