The specific heat capacity represents the amount of energy, in joules, that it takes to raise the temperature of one gram of a given substance by one degree Celsius. Put more simply, the amount of energy it takes to raise a quantity of water by one degree Celsius would raise an equivalent quantity of sand by a little over 14 degrees. Likewise, sand does not need to lose nearly as much energy as water to produce equivalent cooling. Since it "holds" a lot less energy, it cools down much faster than sand.
Indeed, liquid water has an unusually high specific heat capacity. Because it is much less prone to temperature swings than other common substances, large bodies of water often work to moderate temperatures in a region. This helps to explain, for example, why average temperatures fluctuate very little over the year in San Francisco, a city whose climate is heavily influenced by the water that nearly surrounds it.
The answer is calcaneus (heel bone) :)
Answer:
Mountain lands provide a scattered but diverse array of habitats in which a large range of plants and animals can be found. At higher altitudes harsh environmental conditions generally prevail, and a treeless alpine vegetation, upon which the present account is focused, is supported. Lower slopes commonly are covered by montane forests. At even lower levels mountain lands grade into other types of landform and vegetation—e.g., tropical or temperate forest, savanna, scrubland, desert, or tundra.
The largest and highest area of mountain lands occurs in the Himalaya-Tibet region; the longest nearly continuous mountain range is that along the west coast of the Americas from Alaska in the north to Chile in the south. Other particularly significant areas of mountain lands include those in Europe (Alps, Pyrenees), Asia (Caucasus, Urals), New Guinea, New Zealand, and East Africa. The worldwide distribution of mountain lands is shown in Figure 1.
Figure 1: Worldwide distribution of mountain lands.
Explanation:
I think this is ether b. Trait or C. Allele, pretty sure it’s allele though. Good luck!
Chemical changes occur when bonds are broken and/or formed between molecules or atoms. This means that one substance with a certain set of properties (such as melting point, color, taste, etc) is turned into a different substance with different properties. ... One good example of a chemical change is burning a candle.
(Sorry if this didn’t help)