So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24
Answer:
9-(2/x)
Step-by-step explanation:
Answer:
34
Step-by-step explanation:
let x = number of stamps ranu gives out and the number of stamps cathy receives
200 - x = 132 + x
combine like term s
200 - 132 = 2x
68 = 2x
x = 34
Answer:
Third option.
Step-by-step explanation:
You need to cube both sides of the equation. Remember the Power of a power property:

![\sqrt[3]{162x^cy^5}=3x^2y(\sqrt[3]{6y^d})\\\\(\sqrt[3]{162x^cy^5})^3=(3x^2y(\sqrt[3]{6y^d}))^3\\\\162x^cy^5=27x^6y^36y^d](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%3D3x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%5C%5C%5C%5C%28%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%29%5E3%3D%283x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%29%5E3%5C%5C%5C%5C162x%5Ecy%5E5%3D27x%5E6y%5E36y%5Ed)
According to the Product of powers property:

Then. simplifying you get:

Now you need to compare the exponents. You can observe that the exponent of "x" on the right side is 6, then the exponent of "x" on the left side must be 6. Therefore:

You can notice that the exponent of "y" on the left side is 5, then the exponent of "x" on the left side must be 5 too. Therefore "d" is:
