Answer:
Did you ever get the answer?
Explanation:
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer:
A) E = 4.96 x 10³ eV
B) E = 4.19 x 10⁴ eV
C) E = 3.73 x 10⁹ eV
Explanation:
A)
For photon energy is given as:


where,
E = energy of photon = ?
h = 6.625 x 10⁻³⁴ J.s
λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Therefore,

<u>E = 4.96 x 10³ eV</u>
<u></u>
B)
The energy of a particle at rest is given as:

where,
E = Energy of electron = ?
m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 4.19 x 10⁴ eV</u>
<u></u>
C)
The energy of a particle at rest is given as:

where,
E = Energy of alpha particle = ?
m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 3.73 x 10⁹ eV</u>
The value of spring constant and the oscillator's damping constant is
K= 6605.667008, b= 0.002884387
Explanation:
For Weakly damping spring oscillator
K/m = W_0^2 (at resonance)
K= mW_0^2
=0.206 * ( 2π * 28.5) ^2
=0.206 * (2π)^2 * (28.5)^2
K= 6605.667008
F = - bV
b= -F/V = -F/ -W_0 * m
=F/W_0 * m
= 0.438N / 2π * 28.5 * 0.848
b= 0.002884387
The components that must be present for work to be considered is a force and a movement in the same direction as the force. In the basic definition of work, a magnitude and displacement that occurs in the same direction is what makes up work. Among the choices, the correct answer is the first one.