Answer:
If the mass of a car is 1200 kg, and the mass of the driver is 65 kg, the total combined mass of the car and driver expressed with the correct number of significant figures is 1265 kg.
Answer:
x = 4,138 m
Explanation:
For this exercise, let's use the rotational equilibrium equation.
Let's fix our frame of reference on the left side of the pivot, the positive direction for anti-clockwise rotation
∑ τ = 0
n₁ 0 - W L / 2 + n₂ 4 - W_woman x = 0
x = (- W L / 2 + 4n2) / W_woman
Let's reduce the magnitudes to the SI System
M = 6 lbs (1 kg / 2.2 lb) = 2.72 kg
M_woman = 130 lbs = 59.09 kg
Let's write the transnational equilibrium equation
n₁ + n₂ - W - W_woman = 0
n₁ + n₂ = W + W_woman
n₁ + n₂ = (2.72 + 59.09) 9.8
At the point where the system begins to rotate, pivot 1 has no force on it, so its relation must be zero (n₁ = 0)
n₂ = 605,738 N
Let's calculate
x = (-2.72 9.8 6/2 + 4 605.738) / 59.09 9.8
x = 4,138 m
Answer:
Explanation:
The force of friction equals the sine component of the force due to gravity
Answer:
New pressure is 0.534 atm
Explanation:
Given:
Initial volume of the gas, V₁ = 250 mL
Initial pressure of the gas, P₁ = 1.00 atm
Initial temperature of the gas, T₁ = 20° C = 293 K
Final volume of the gas, V₂ = 500 mL
Final pressure of the gas = P₂
Final temperature of the gas, T₁ = 40° C = 313 K
now,
we know for a gas
PV = nRT
where,
n is the moles
R is the ideal gas constant
also, for a constant gas
we have
(P₁V₁/T₁) = (P₂V₂/T₂)
on substituting the values in the above equation, we get
(1.00 × 250)/293 = (P₂ × 500)/313
or
P₂ = 0.534 atm
Hence, the <u>new pressure is 0.534 atm</u>