Answer:
82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.
Explanation:
Since molarity is the number of moles of solute that are dissolved in a given volume, calculated by dividing the moles of solute by the volume of the solution, the following rule of three can be applied: if in 1 L (1,000 mL) of KNO₃ there are 1.6 moles of the compound present, in 510 mL how many moles will there be?

moles= 0.816
Being the molar mass of the elements:
- K: 39 g/mole
- N: 14 g/mole
- O: 16 g/mole
So the molar mass of the compound KNO₃ is:
KNO₃= 39 g/mole + 14 g/mole + 3*16 g/mole= 101 g/mole
Now I can apply the following rule of three: if in 1 mole of KNO₃ there are 101 g, in 0.816 moles how much mass is there?

mass= 82.416 grams
<u><em>82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.</em></u>
Answer:
2.9 grams.
Explanation:
- From the balanced reaction:
<em>Mg + 1/2O₂ → MgO,</em>
1.0 mole of Mg reacts with 0.5 mole of oxygen to produce 1.0 mole of MgO.
- We need to calculate the no. of moles of (1.8 g) of Mg and (6.0 g) of oxygen:
no. of moles of Mg = mass/molar mass = (1.8 g)/(24.3 g/mol) = 0.074 mol.
no. of moles of O₂ = mass/molar mass = (6.0 g)/(16.0 g/mol) = 0.375 mol.
<em>So. 0.074 mol of Mg reacts completely with (0.074/2 = 0.037 mol) of O₂ which be in excess.</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of Mg produce → 1.0 mol of MgO.
∴ 0.074 mol of Mg produce → 0.074 mol of MgO.
<em>∴ The amount of MgO produced = no. of moles x molar mass </em>= (0.074 mol)(40.3 g/mol) = <em>2.98 g.</em>
Answer:
As blood travels through the body, oxygen is used up, and the blood becomes oxygen poor. Oxygen-poor blood returns from the body to the heart through the superior vena cava (SVC) and inferior vena cava (IVC), the two main veins that bring blood back to the heart.
Explanation:
Answer: is C
Explanation:
Both the atomic mass and the atomic number increase from left to right