Depending if you were going up, you would be seeing an increase in relative ionization energies in a particular group on the periodic table, and vice versa, if you go down the group, an decrease in the relative ionization energies.
Answer:
B and C is your answer
Explanation:
Hope I helped, Sorry if I'm wrong
Answer:
<h3>The answer is 0.73 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 620 g
volume = 850 mL
We have

We have the final answer as
<h3>0.73 g/mL</h3>
Hope this helps you
The correct answer is 0.06857 moles.
C₆H₁₂O₆, that is, glucose has six carbons, twelve hydrogens, and six oxygen atoms. The atomic weight of C, H and O are as follows:
Six atoms of carbon = 6 × 12.01 g = 72.06 g
Twelve atoms of hydrogen = 12 × 1.008 g = 12.096 g
Six atoms of oxygen = 6 × 16.00 g = 96.00 g
So, the molar mass of C₆H₁₂O₆ is 72.06 g + 12.096 g + 96.0 g = 180.156 g.
It can also be written in the form as 180.16 g of C₆H₁₂O₆ is equal to 1 mole of C₆H₁₂O₆or 180.16 g/mole (as the molar mass)
Now, there is a need to find moles of 12.354 grams of C₆H₁₂O₆. So, the final conversion is:
12.354 g C₆H₁₂O₆ × 1 mole of C₆H₁₂O₆ / 180.16 g C₆H₁₂O₆
= 0.06857 moles
Wait hold up do you live in Wilson county????