Answer:
Explanation:
NH₄NO₃ = NH₄⁺ +NO₃⁻
heat released by water = msΔ T
m is mass , s is specific heat and ΔT is fall in temperature
= 50 x 4.18 x ( 22 - 16.5 ) ( mass of 50 mL is 50 g )
= 1149.5 J .
This heat will be absorbed by the reaction above .
q for the reaction = + 1149.5 J
2 )
molecular weight of NH₄NO₃ = 80
No of moles reacted = 5/80 = 1 / 16 moles.
3 )
5 g absorbs 1149.5 J
80 g absorbs 1149.5 x 16 J
= 18392 J
= 18.392 kJ.
= + 18.392 kJ
ΔH = 18.392 kJ / mol
Answer : The mass of nitric acid is, 214.234 grams.
Solution : Given,
Moles of nitric acid = 3.4 moles
Molar mass of nitric acid = 63.01 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of nitric acid.

Therefore, the mass of nitric acid is, 214.234 grams.
Answer:
v2=40.35L
Explanation:
p1v1/t1=p2v2/t2
v2=t2p1v1/t1p2
v2=984*760*22.4/273.15*1520
v2=40.35 L
Answer: Energy is being absorbed as the reaction proceeds
Explanation:
Endergonic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
Exergonic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Thus an endergonic reaction refers to a chemical reaction in which Energy is being absorbed as the reaction proceeds.