Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer:
volume of gas=101.94L
Explanation:
Suppose given gas follows the ideality nature of gas
PV=nRT
n=35.8/44mol=0.814 mol
P=0.197atm
T=27.5C=300.5K
R=0.0821atm/mol/K
after putting all value we get,
V=101.94L
volume of gas=101.94L
Meiosis 1 is the reductional division ! so after telophase 1 , cytokinesis takes place and two haploid cells are formed !
Answer:
The reaction in which heat is absorbed from the surrounding is called endothermic reaction.
so
I think it's answer is 2nd option.
Answer:
49.35 mL
Explanation:
Given: 56.2 mL of gas
To find: volume that 56.2 mL of gas at 820 mm of Hg would occupy at 720 mm of Hg
Solution:
At 820 mm of Hg, volume of gas is 56.2 mL
At 1 mm of Hg, volume of gas is 
At 720 mm of Hg, volume of gas is 