Answer:
B and C
Explanation:
When we have to do a buffer solution we always have to choose the reaction that has the <u>pKa closer to the desired pH value</u>. When we find the pKa values we will obtain:
![pKa_1=-Log[6.9x10^-^3]=2.16](https://tex.z-dn.net/?f=pKa_1%3D-Log%5B6.9x10%5E-%5E3%5D%3D2.16)
![pKa_2=-Log[6.2x10^-^8]=7.20](https://tex.z-dn.net/?f=pKa_2%3D-Log%5B6.2x10%5E-%5E8%5D%3D7.20)
![pKa_3=-Log[4.8x10^-^13]=12.31](https://tex.z-dn.net/?f=pKa_3%3D-Log%5B4.8x10%5E-%5E13%5D%3D12.31)
The closer value is pKa2 with a value of 7.2. Therefore we have to use the second reaction. In which
is the <u>acid</u> and
is the <u>base</u>. Therefore the answer for the first question is B and the answer for the second question is C.
The 02 is a solid. I hope thus helped you :)
I believe the answer is D.
Scientists are biased, and want to prove their specific hypothesis is right.
Answer:
0.5mol/L
Explanation:
First, let us calculate the number of mole NaOH = 23 + 16 + 1 = 40g/mol
Mass of NaOH from the question = 30g
Number of mole = Mass /Molar Mass
Number of mole = 30/40 = 0.75mol
Volume = 1.5L
Active mass = mole/Volume
Active mass = 0.75mol/1.5L
Active mass = 0.5mol/L