Answer:
1.Stronger bones 2.Joint flexibility
Answer:
30 kilometers is a reasonable measurement
Naturally we assume that 10000 km/hr is initial velocity (same as being shot from a cannon), and no air resistance. With so high a velocity, the effect of diminishing gravity with increasing radius must be taken into account, so you use an energy solution. M is earth mass, r is earth radius.
KE/m = (9000000/3600)^2/2 = 3858025 J/kg
ΔPE/m = (PE(at height) - PE(at surface))/m = -GM/(r+h) + GM/r
KE/m = ΔPE/m
KE/m - GM/r = -GM/(r+h)
h = -GM / (KE/m - GM/r) - r = 335665.44 m
(Using G = 6.673E-11 Nm^2/kg^2, M = 5.9742E24 kg, r = 6378100 m)
Answer:
It is possible because, the TV broadcast audio and video signals in radio frequency which travels at the speed of light while the audio signals travel to those present in the stadium at the speed of sound which is over eight hundred thousand times slower than the speed of light
Explanation:
It is possible because of the following;
1. TV signals from the camera (including the captured sound) very close to the field of play are transmitted through the radio frequency bands and as such are a form of electromagnetic radiation that travels at the speed of light which is about 300,000 km/second
It will therefore, take 1 second for a sound of the game to reach someone located at 300,000,000 meters watching a live televised game
2. The speed of sound is about 343 m/second and it therefore takes up to 2 seconds for a sound to reach someone 686 meters away from the ball in the stadium.
The speed of sound, c, is given by the Newton-Laplace formula

where
K = bulk modulus
ρ = density
Because the density is constant, the speed of sound is proportional to the square root of the bulk modulus.
Therefore when the bulk modulus increases, the speed of sound increases by the square root of the bulk modulus.
For example, if K is doubled, then

Answer:
If the bulk modulus increases by a factor of n, then c increases by a factor of √n.