Along plate edges, at points where oceanic or continental plates meet ot at the edges of the plates
Answer:
10g
Explanation:
As the Law of Conservation of Mass states that " Mass can neither be created nor be destroyed in a chemical reaction".
Though melting of tin isn't a chemical change, the same logic is applied here...
Hence,
The mass of tin will be 10 g itself...
Answer:

Explanation:
<u>Given:</u>
- Mass,
- Velocity,

where,
are the uncertainties in mass and velocity respectively.
The kinetic energy is given by

The uncertainty in kinetic energy is given as:

Answer:
Explanation:
The rod will act as pendulum for small oscillation .
Time period of oscillation

angular frequency ω = 2π / T
= 
b )
ω = 20( given )
velocity = ω r = ω l
Let the maximum angular displacement in terms of degree be θ .
1/2 m v ² = mgl ( 1 - cosθ ) ,
[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]
.5 ( ω l )² = gl( 1 - cos θ )
.5 ω² l = g ( 1 - cosθ )
1 - cosθ = .5 ω² l /g
cosθ = 1 - .5 ω² l /g
θ can be calculated , if value of l is given .
You can use Vf^2-Vi^2 = 2ax
Vf^2 - 0 = 2(9.81)(25)
Or you can use energy
mgh = 1/2mv^2
2gh =v^2
Same thing