<h2>
Answer:5

,133.6

,51.18

</h2>
Explanation:
Let
,
be the horizontal and vertical components of velocity.
Question a:
Horizontal component of velocity is the ratio of range and time of flight.
So,horizontal component of velocity is 
So,
Question b:
Time of flight=
So,
Maximum height is given by 
So,maximum height is 
Question c:
The vertical velocity is already calculated in Question b.

Answer:
1190 N
Explanation:
Force: This can be defined as the product of mass and velocity. The unit of force is Newton(N).
From the question,
F = ma................. Equation 1
Where F = average force, m = mass, a = acceleration.
But,
a = (v-u)/t................ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t.............. Equation 3
Given: m = 70 kg, v = 1.7 m/s, u = 0 m/s (from rest), t = 0.1 s.
Substitute into equation 3
F = 70(1.7-0)/0.1
F = 1190 N.
Answer:
(A) Reading will be 65 N
(B) Net force on the elevator will be 49.076 N
Explanation:
We have given the balance force = 65 N
Acceleration due to gravity 
We know that W=mg
So 
m = 6.632 kg
(a) In first case as the as the speed is constant so the force on the elevator will be 65 N
(B) In second case as the elevator is decelerating at a rate of 
So net acceleration = 9.8-2.4=
So net force on elevator will be = m× net acceleration = 6.632×7.4 = 49.076 N
Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m