Answer:
λ = 8.88 x 10⁻⁷ m = 888 nm
Explanation:
The energy band gap is given as:
Energy Gap = E = 1.4 eV
Converting this to Joules (J)
E = (1.4 eV)(1.6 x 10⁻¹⁹ J/1 eV)
E = 2.24 x 10⁻¹⁹ J
The energy required for photovoltaic generation is given as:
E = hc/λ
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = ?
Therefore,
2.24 x 10⁻¹⁹ J = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.24 x 10⁻¹⁹ J)
<u>λ = 8.88 x 10⁻⁷ m = 888 nm</u>
Answer:
Option C
Explanation:
When this type of situation occurs where the price falls and the sale of a product increases then a shift is observed in the supply curve towards right as a result of this shift there is a need to shift down the demand curve
Thus When supply curve is shifted to the right the demand curve is moved down accordingly.
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>
Well.....
Gravity from the sun pulls the planets torward it while inertia pulls it outward....but I guess that would be why it orbits sorry if this doesn't help but uh
Answer:
Hydraulic pressure exerted on glass slab, ρ=10 atm
Bulk modulus of glass, B=37×10^9 Nm^−2
Bulk modulus, B=P/(ΔV/V)
where,
ΔV/V= Fractional change in volume
ΔV/V=P/B
=10×1.013×10^5 /(37×10 ^9)
=2.73×10^-5
Therefore, the fractional change in the volume of the glass slab is 2.73×10^-5
Hope it helps