Answer:
0.652 mA
Explanation:
According to Faraday's Law :



where ;
A = 



Induced current I = 
= 
= 
= 0.652 mA
Thus, the induced current in the loop of wire over this time = 0.652 A
Answer:
<h3>After 3seconds</h3>
Explanation:
A supersonic aircraft flies at 3 km altitude at a speed of 1000 m/s on a standard day. How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer
Using the formula for calculating speed expressed as;
Speed = Distance/Time
Given;
Distance = 3km = 3000m
Speed = 1000m/s
Required
How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer (Time)
From the formula;
Time = Distance/speed
Time = 3000/1000
Time = 3seconds
Hence the sound of the aircraft is heard after 3 seconds
The doppler effect has red and blue shifts. A red shift means something is moving farther away, and a blue shift means it is moving closer. The universe has a red shift, and since a red shift means that it is moving farther away, this tells astronomers that the universe is still expanding.
Answer:
The electric force between them if the pieces of grain are 2 cm apart is
.
Explanation:
Given:
Charge on one grain, 
Charge on another grain, 
Separation between them, 
Electric force acting between two charges
separated by a distance
is given as:

Where,
is Coulomb's constant equal to
.
Now, plug in all the values and solve for
.

Therefore, the electric force between them if the pieces of grain are 2 cm apart is
.
Complete question :
A 12 m x 15 m house is built on a 12-cm-thick concrete slab.
What is the heat-loss rate through the slab if the ground temperature is 5°C while the interior of the house is 25°C
Answer:
3kW
Explanation:
Given the following :
Dimension of house :
Length = 12m
Width = 15m
Thickness of concrete slab (t) = 12cm
t in metres :
100cm = 1m
12cm = (12/100)m
= 0.12m
Ground temperature (Tg) = 5°C
Interior temperature = (Th) = 25°C
Thermal conductivity of concrete (K) is approximately 1 Wm/k
Using the relation:
Q = KA * [ (Th - Tg) / d]
A = Length * width = (12 *15) = 180
Q = (1 * 180) * [(25°C - 5°C) / 0.12]
Q = 180 * (20/0.12)
Q = 180 * 16.6666
Q = 3,000W = 3kW