In order to utilize the graph, first you have to distinguish which graph accurately pertains to the two functions.
This can be done by rewriting the equations in the form y = mx + b which can be graphed with ease; where m is the slope and b is the y intercept.
-x^2 + y = 1
y = x^2 + 1
So this will be a basic y = x^2 parabola where the center intercepts on the y axis at (0, 1)
-x + y = 2
y = x +2
So this will be a basic y = x linear where the y intercept is on the y axis at (0, 2)
The choice which depicts these two graphs correctly is the first choice. The method to find the solutions to the system of equations by using the graph is by determining the x coordinate of the points where the two graphed equations intersect.
Answer:
Centre: (6,0)
Radius: 2
Step-by-step explanation:
r² = 4
r = 2
Let α represent the acute angle between the horizontal and the straight line from the plane to the station. If the 4-mile measure is the straight-line distance from the plane to the station, then
sin(α) = 3/4
and
cos(α) = √(1 - (3/4)²) = (√7)/4
The distance from the station to the plane is increasing at a rate that is the plane's speed multiplied by the cosine of the angle α. Hence the plane–station distance is increasing at the rate of
(440 mph)×(√7)/4 ≈ 291 mph
Answer:
The answer is 15
Step-by-step explanation:
hope this helps