Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.
There’s many types of electricity that comes from an outlet, like [15A, 120 Volt Outlets] those are more common in older homes and can come in two versions [Two-pronged outlet and three-pronged version]
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km