Venus shares a similar size, surface composition, and has an atmosphere with a complex weather system. Venus is different from Earth because it spins the opposite direction of Earth and it’s rotation is very slow.
- The wavelength of the red light in "nanometer" is 7×

- Wavelength is given as : 7×
meter
- 1 nanometer = (
meter)
- Let X= value of the wavelength in nanometer.
1 nanometer =
meter
X nanometer = 7×
meter
- <em>If we Cross multiply</em>
X nanometer = (
)
X= 7×
nanometer
Therefore, the wavelength in "nanometer" is 7×
Learn more at :brainly.com/question/12924624?referrer=searchResults
Answer:
1.696 nm
Explanation:
For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,
dsinθ = mλ = (1)λ = λ
dsinθ = λ
sinθ = λ/d.
Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m
From trig ratios 1 + cot²θ = cosec²θ
1 + (1/tan²θ) = 1/(sin²θ)
substituting the values of sinθ and tanθ we have
1 + (D/w)² = (d/λ)²
(D/w)² = (d/λ)² - 1
(w/D)² = 1/[(d/λ)² - 1]
(w/D) = 1/√[(d/λ)² - 1]
w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹ = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.
w is also the distance from the center to the other principal maximum on the other side.
So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm
So, the minimum width of the screen must be 1.696 nm
<span>Quarks are thought to be the basic component of protons and newtons.</span>
The final velocity becomes 31.48 m/s
<u>Explanation:</u>
Given:
Initial velocity, u = 33 m/s
Height, h = 5m
Final velocity, v = ?
According to Newton's law:
v² - u² = 2gh
where,
g is the acceleration due to gravity and
g = 9.8 m/s²
On substituting the values we get:

Therefore, the final velocity becomes 31.48 m/s