Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
Molar mass of vitamin B1, C12H17N4OS = 265.34 g/ mol
Molar mass of vitamin B2, C17H20N4O6 = 376.37 g/ mol
Molar mass of vitamin B5, C9H17NO5 = 219.24 g/ mol
Molar mass of vitamin B6, C8H11NO3 = 169.18 g/ mol
Molar mass of vitamin B7, C10H16N2O3S = 244.31 g/ mol
Now,
Order of increasing molar mass = B6 < B5 < B7 < B1 < B2
Answer:-
Oxygen gains electrons and is reduced.
Explanation:-
For this reaction the balanced chemical equation is
4Fe + 3O2 --> 2Fe2O3
When Oxygen is present as oxygen gas, the oxidation number of O is Zero since it is the only element present in Oxygen gas.
Similarly Iron is present in Fe with oxidation number Zero.
In the case of Fe2O3, Oxygen has the oxidation number -2 while Iron has +3.
So the oxidation number of Oxygen goes from Zero to -2.
Since the oxidation number decreases Oxygen is reduced.
Since reduction involves gain of electrons, Oxygen gains electrons.
Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
![Ka=\frac{[ClO-]*[H+]}{[HClO]}=\frac{x*x}{0.05-x}=3x10^{-8}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BClO-%5D%2A%5BH%2B%5D%7D%7B%5BHClO%5D%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.05-x%7D%3D3x10%5E%7B-8%7D)
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:

clearing the x and calculating its value we have:
![x=3.87x10^{-5}=[H+]=[ClO-]](https://tex.z-dn.net/?f=x%3D3.87x10%5E%7B-5%7D%3D%5BH%2B%5D%3D%5BClO-%5D)
the pH can be calculated by:
![pH=-log[H+]=-log[3.87x10^{-5}]=4.41](https://tex.z-dn.net/?f=pH%3D-log%5BH%2B%5D%3D-log%5B3.87x10%5E%7B-5%7D%5D%3D4.41)
The correct answer would be the third option. There would be two atoms that can form hydrogen bonds with the water molecules from the molecule NH2CH2CH2OH. The atoms O and N could make hydrogen bonds with H. Hydrogen bond is an intermolecular force that is a dipole-dipole interaction between a hydrogen and an atom of O, F and N.