The amount of calories you weight
Answer:
Atoms of metal elements give away electrons in their reactions to form positive ions. The ions formed have a full outer electron shell, so are very stable.
Explanation:
To become stable, the metal atom wants to get rid of one or more electrons in its outer shell. ... Alternately, an atom that loses electrons becomes a positively charged ion (aka cations). The particles in an ionic compound are held together because there are oppositely charged particles that are attracted to one another.
Answer:
A-B
C-D
E-F
I think it's these because Potential Energy increase when the graph increases and remain constant when the graph is flat.
Answer:
Ag+(aq) + Cl-(aq) —> AgCl(s)
Explanation:
2AgNO3(aq) + CaCl2(aq) —>2AgCl(s) + Ca(NO3)2(aq)
The balanced net ionic equation for the reaction above can be obtained as follow:
AgNO3(aq) and CaCl2(aq) will dissociate in solution as follow:
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
CaCl2(aq) —> Ca2+(aq) + 2Cl-(aq)
AgNO3(aq) + CaCl2(aq) –>
2Ag+(aq) + 2NO3-(aq) + Ca2+(aq) + 2Cl-(aq) —> 2AgCl(s) + Ca2+(aq) + 2NO3-(aq)
Cancel out the spectator ions i.e Ca2+(aq) and 2NO3- to obtain the net ionic equation.
2Ag+(aq) + 2Cl-(aq) —> 2AgCl(s)
Divide through by 2
Ag+(aq) + Cl-(aq) —> AgCl(s)
The, the net ionic equation is
Ag+(aq) + Cl-(aq) —> AgCl(s)
Answer:
1. Dynamic equilibrium is a equilibrium in which the rate of forward direction is equal to the rate of backward direction. It is represented by a right left arrow.
2) Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
![K_c=\frac{[[Fe(SCN)]^{2-}]}{[Fe^{3+}][SCN^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28SCN%29%5D%5E%7B2-%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5BSCN%5E-%5D%7D)
3) The value of
is 1000 , which means the products are more favoured as compared to reactants and that the equilibrium lies more towards product side.