Answer:
2.803013439419911 × 10⁻¹² J
Explanation:
Mass defect = mass of reactant - mass of product
(2.0140 + 3.01605) - (4.002603 + 1.008665)
5.03005 - 5.011268 = 0.018782 amu
mass in Kg = mass (amu) × 1.66053892173 × 10⁻²⁷ kg
mass in kg = 0.018782 × 1.66053892173 × 10⁻²⁷ = 3.1188242027932 × 10⁻²⁹kg
E = Δm c² where c is the speed of light = 2.9979 × 10⁸m/s
E = 3.1188242027932 × 10⁻²⁹kg × (2.9979 × 10⁸m/s)² = 2.803013439419911 × 10⁻¹² J
Answer:
28.9%
Explanation:
Let's consider the following balanced equation.
2 FeS₂ + 11/2 O₂ ⇒ Fe₂O₃ + 4 SO₂
We can establish the following relations:
- The molar mass of Fe₂O₃ is 159.6 g/mol
- 1 mole of Fe₂O₃ is produced per 2 moles of FeS₂
- 1 mole of Fe is in 1 mole of FeS₂
- The molar mass of Fe is 55.84 g/mol
The amount of Fe in the sample that produced 0.516 g of Fe₂O₃ is:

The percent of Fe in 1.25 g of the ore is:

Your a furry cause I don’t know
QPOE Files
The x-ray data are stored in QPOE files (Quick Position-Ordered Events, *.qp) rather than image arrays. These are lists of photons identified by several quantities, including the position on the detector, pulse height, and arrival time. Note that, unlike IRAF images, QPOE files have no associated header file, and are always stored in the current directory, unless explicitly specified otherwise. Non-PROS IRAF tasks can also access QPOE data files in place of image arrays.
Mn+2 is cation and CO3 is anion
hope it help