1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
13

write a paragraph about convection make sure to include these words -density,increasing,decreasing,rise,sink.

Physics
1 answer:
k0ka [10]3 years ago
3 0

Answer:yQIEFUEQf

g

Explanation:fdgagsdg

You might be interested in
The length of vector A is 93.8 meters and the length of Ay is 38.4 meters, then the length of A, must be
vaieri [72.5K]

Answer:

85.556metres

Explanation:

Using pythagorean theorem

C²=A²+B²

we have c as the hypotenuse vector A thus:

93.8²=A²+38.4²

93.8²-38.4²=A²

8794.44-1474.56=A²

7319.88=A²

A=85.556

3 0
3 years ago
You have a 3.00-liter container filled with N₂ at 25°C and 4.45 atm pressure connected to a 2.00-liter container filled with Ar
LuckyWell [14K]

Answer : The final pressure in the two containers is, 2.62 atm

Explanation :

Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}

Thus, the expression for final pressure in the two containers will be:

PV=P_1V_1+P_2V_2

P=\frac{P_1V_1+P_2V_2}{V}

where,

P_1 = pressure of N₂ gas = 4.45 atm

P_2 = pressure of Ar gas = 2.75 atm

V_1 = volume of N₂ gas = 3.00 L

V_2 = volume of Ar gas = 2.00 L

P = final pressure of gas = ?

V = final volume of gas = (4.45 + 2.75) L = 7.2 L

Now put all the given values in the above equation, we get:

P=\frac{(4.45atm)\times (3.00L)+(2.75atm)\times (2.00L)}{7.2L}

P=2.62atm

Thus, the final pressure in the two containers is, 2.62 atm

8 0
3 years ago
What is the minimum diameter necessary for a radio telescope working at f=1×10^10 Hz to be able to separate two objects 1 deg ap
Ad libitum [116K]
Your answer is a yessssssir
5 0
2 years ago
A train is accelerating at a rate of 2 km/hr/s.  If its initial velocity is 20 km/hr, what is its velocity after 30 seconds?
Mademuasel [1]
Here it is. *WARNING* VERY LONG ANSWER

________________________________________... 
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>

<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>

<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>

<span>Their KE as they crossed the line=(1/2)Mv^2 </span>

<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>

<span>Their KE as they crossed the line is 70224.11 J </span>

<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>

<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>

<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>

<span>The height of top of the next hill = h = 5.00 m </span>

<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>

<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>

<span>Suppose the final speed at the top of second hill is v </span>

<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>

<span>As mechanical energy is conserved, </span>

<span>Final total mechanical energy =Initial total mechanical energy </span>

<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>

<span>v = sq rt [u^2+2g(H-h)] </span>

<span>v = sq rt [4+2*9.8(20-5)] </span>

<span>v = sq rt 298 </span>

<span>v =17.2627 m/s </span>

<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>

<span>a.)The mass of bean = m = 2.0 g </span>

<span>Height up to which the been jumps = h = 1.0 cm from hand </span>

<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>

<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>

<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>

<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>

<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>

<span>Acceleration </span>

<span>Initial velocity = u = 20 km/hr, </span>

<span>Velocity after 30 seconds = v = u + at </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>

<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>

<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>

<span>Distance he covered = s = (1/2)at^2=49.95 m</span>
7 0
3 years ago
Tungsten, W-181, is a radioactive isotope with a half life of 121 days. If a medical lab purchases 24 kg of W-181, how much will
luda_lava [24]

1 year = (365 / 121) = 3.02 half-lifes.  Let's call it 3 .

The amount of radioactive isotope remaining after 3 half-lifes is

(1/2) x (1/2) x (1/2) = 1/8 

A year after the medical lab received the 24 kg of W-181, 
there will still be 24 kg of stuff in the container. 
But only 3 kg of it will still be W-181.  The other 21 kg will be
whatever substances W-181 becomes when it decays.

Sadly, even the 3 kg of good stuff won't be usable anymore ...
it'll be thoroughly mixed with the 21 kg of junk.  It would be harder
and more expensive to try and separate them than to buy a new
can of pure W-181, and USE it before 7/8 of it has deteriorated.
8 0
3 years ago
Read 2 more answers
Other questions:
  • An airplane flies 33 m/s due east while experiencing a tailwind of unknown velocity due northThe resultant velocity is determine
    9·1 answer
  • The gas tank of a car is filled with a nozzle that discharges gasoline at a constant flow rate. Based on unit considerations of
    12·1 answer
  • An object traveling at constant speed v in a circle of radius R has an acceleration am 5 m/s2. If both R and v are doubled, what
    15·1 answer
  • In another solar system is planet Driff, which
    15·1 answer
  • An iron bar can be made magnetic when __________.
    10·1 answer
  • A 60.0 kg soccer player kicks a 0.4000 kg stationary soccer ball with 6.25 N of force. How fast does the soccer ball accelerate,
    5·1 answer
  • The ability of a muscle group to exert sub-maximal forces against a resistance over numerous contractions is called A. muscle en
    13·1 answer
  • Two small plastic spheres each have a mass of 1.2 g and a charge of -56.0 nC . They are placed 3.0 cm apart (center to center).
    11·1 answer
  • If a person walks 3 m north and 5 meters east, how would you find the displacement for that person? what would the displacement
    13·1 answer
  • A 3.8kw elective motor powers an inclined conveyer belt. It is designed to lift heavy boxes from the warehouse floor to loading
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!