I would think it would be the same if you are weighting the dish and the Ice cube at the same time anyway. Not to sure though I'm a beginner and math is complicated for me sometimes.
Answer: The magnitude of the force exerted on the roof is 490522.5 N.
Explanation:
The given data is as follows.
Below the roof,
= 0 m/s
At top of the roof,
= 39 m/s
We assume that
is the pressure at lower surface of the roof and
be the pressure at upper surface of the roof.
Now, according to Bernoulli's theorem,


= ![0.5 \times 1.29 \times [(39)^{2} - (0)^{2}]](https://tex.z-dn.net/?f=0.5%20%5Ctimes%201.29%20%5Ctimes%20%5B%2839%29%5E%7B2%7D%20-%20%280%29%5E%7B2%7D%5D)
= 
= 981.045 Pa
Formula for net upward force of air exerted on the roof is as follows.
F = 
= 
= 490522.5 N
Therefore, we can conclude that the magnitude of the force exerted on the roof is 490522.5 N.
Answer:
Nothing is more important to us on Earth than the Sun. Without the Sun's heat and light, the Earth would be a lifeless ball of ice-coated rock. The Sun warms our seas, stirs our atmosphere, generates our weather patterns, and gives energy to the growing green plants that provide the food and oxygen for life on Earth.
Explanation:
I believe the k value represents the D. Stiffness of the spring.
-- Gravity adds 9.8 m/s to the downward speed of any object, every second ... as long as there are no other forces messing with it.
-- In 0.6 sec, gravity added (0.6x9.8)= 5.88 m/s to the downward speed of this ball.
-- This ball didn't start from zero. You threw it down with an initial speed of 1 m/s. So after 0.6 sec, with the help of gravity, its speed is
(1) + (5.88) = 6.88 m/s .
Pick choice-C .
Notice that we don't care how high it was off the ground when you threw it, just as long as it was high enough to keep falling for 0.6 sec without hitting the ground.