Answer:
Explanation:
a ) speed of passenger = circumference / time
= 2π R / Time
= 2 x 3.14 x 50 / 60
= 5.23 m /s
b )
centrifugal force = m v² /R
= (882 /9.8 ) x 5.23² / 50
= 77.47 N
Apparent weight at the highest point
real weight - centrifugal force
= 882 - 77.47
= 804.53 N
Apparent weight at the lowest point
real weight + centrifugal force
= 882 +77.47
= 959.47 N
c ) if the passenger’s apparent weight at the highest point were zero
centrifugal force = weight
mv² /R = mg
v² = gR
= 9.8 X 50
v = 22.13 m /s
d )
apparent weight
mg - mv² / R
= 882 - (882 / 9.8 )x 22.13²/50
= 882 + 882
= 1764 N
=
Answer:
The Nucleus
Explanation:
The nucleus contains the majority of an atom's mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom's volume. I hope this helps you :D
Via half-life equation we have:

Where the initial amount is 50 grams, half-life is 4 minutes, and time elapsed is 12 minutes. By plugging those values in we get:

There is 6.25 grams left of Ra-229 after 12 minutes.
Answer:
Kf= 36 J
W(net) = 32 J
Explanation:
Given that
m = 2 kg
F= 4 N
t= 2 s
Initial velocity ,u= 2 m/s
We know that rate of change of linear momentum is called force.
F= dP/dt
F.t = ΔP
ΔP = Pf - Pi
ΔP = m v - m u
v= Final velocity
By putting the values
4 x 2 = 2 ( v - 2)
8 = 2 ( v - 2)
4 = v - 2
v= 6 m/s
The final kinetic energy Kf
Kf= 1/2 m v²
Kf= 0.5 x 2 x 6²
Kf= 36 J
Initial kinetic energy Ki
Ki = 1/2 m u²
Ki= 0.5 x 2 x 2²
Ki = 4 J
We know that net work is equal to the change in kinetic energy
W(net) = Kf - Ki
W(net) = 36 - 4
W(net) = 32 J
Answer:
Gram
Explanation:
Meter is a unit used to measure length and liter is used to measure liquids therefore using process of elimination the answer has to be gram