The only thing that definitely happens in every such case is:
The container becomes heavier.
Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Answer:
F = 41,954 N
Explanation:
given,
mass of bucket = 580 Kg
length of the cable = 20 m
velocity = 40 m/s
angle made = 38.0°
T cos 38° = m g..............(1)
T sin 38^0 = \dfrac{mv^2}{l} + F......(2)
dividing equation (2) by (1)



F = -46400 + 4445.36
F = -41,954 N
hence, the force is acting in the opposite direction as assumed.
F = 41,954 N
If the temperature increases, then pressure increases too. (T<span>he molecules in the gas move faster, exerting a greater force. This </span>increases t<span>he </span>pressure<span>.)</span>